Welcome to my informal portfolio.

The purpose of this site is to provide insight into my personality and work ethic as a spacecraft propulsion engineer... But if you just want to see videos of things blowing up, please click here.

I’m currently working on developing novel electric plasma thrusters for my PhD at the Surrey Space Centre. Electric plasma thrusters are highly efficient rocket engines that use a plasma as well as electric and magnetic fields to accelerate a spacecraft. These thrusters are much smaller than traditional rocket engines and yet have the capability to take spacecraft far further than any traditional rocket engine ever could.

3D Printed Electric Thrusters

De Laval nozzles 3D printed in Alumina ceramic.

I'm currently working to develop the first ceramic 3D printed electric plasma thruster.

Electric thrusters need thermal and electrical insulation from the hot, charged plasma. Ceramics are the best material to achieve both of these things, however machining ceramics involves high costs and takes a long time. 3D printing of ceramics allows for the creation of shapes that are unattainable via machining, whilst also being much faster and cheaper to produce.

Rocket Factory Augsburg

In the summer of 2021, I was hired as a propulsion engineering intern at Rocket Facory Augsburg (RFA) in Germany, a company aiming to become the SpaceX of Europe.

During my time at RFA, I developed and operated the test rig for RFA’s liquid NM-N2O cryogenic pressure-fed kick stage rocket engine and igniter. This involved the modification of automotive fuel injectors for use in a torch ignitor and ullage engine.

I was also involved in the design of a water based sound suppression system for the 1.7 kN kick stage rocket engine. As well as an initial high-level review of the development of a high thrust electric propulsion system.

This lead me to publish an atricle in The Conversation titled 3D-printed rocket engines: the technology driving the private sector space race.

Hot fire of RFA's main rocket engine, Jul 2021.


Testing the AQUAJET Thruster, Feb 2021.

In summer 2020, I was awarded a £60,000 Studentship to study for a PhD in Electric Spacecraft Propulsion.

During my PhD, I worked as a test engineer on the AQUAJET thruster, an electric plasma thruster that can run on water, the ultimate green propellant. The AQUAJET thruster has the potential to allow for spacecraft that can cruise space indefinitely, only stopping every now and then to refuel with water from a passing comet.


Inspired by the book Rocket Boys by Homer Hickam, I decided to design and test a series of sugar rockets in my back garden. Using caster sugar as the fuel and Potassium Nitrate as the oxidiser, a potent mix of rocket fuel was formed. The oxidiser fuel ratio was adjusted to increase the power of the fuel, and the geometry of the chamber was optimised to give a long lasting, high thrust burn.

Videos of earlier unsucessfull attempts can be found here.

Firing a homemade sugar rocket, Jul 2019.


Presenting for the Commercial UAV Show at Excel London, Nov 2019.

I graduated from the University of Southampton in 2020 with a MEng in Aeronautics and Astronautics / Spacecraft Engineering. While at University, I took on leading roles in my two major group projects, guiding a team of six students to build a fixed wing UAV as well as an ultra-heavy lift drone for casualty evacuation. At the same time, as an RAF Reservist, I trained for the role of an officer, completing courses in military leadership and command in high pressure scenarios.